8,822 research outputs found

    Cancer immunology and canine malignant melanoma: a comparative review

    Get PDF
    Oral canine malignant melanoma (CMM) is a spontaneously occurring aggressive tumour with relatively few medical treatment options, which provides a suitable model for the disease in humans. Historically, multiple immunotherapeutic strategies aimed at provoking both innate and adaptive anti-tumour immune responses have been published with varying levels of activity against CMM. Recently, a plasmid DNA vaccine expressing human tyrosinase has been licensed for the adjunct treatment of oral CMM. This article reviews the immunological similarities between CMM and the human counterpart; mechanisms by which tumours evade the immune system; reasons why melanoma is an attractive target for immunotherapy; the premise of whole cell, dendritic cell (DC), viral and DNA vaccination strategies alongside preliminary clinical results in dogs. Current “gold standard” treatments for advanced human malignant melanoma are evolving quickly with remarkable results being achieved following the introduction of immune checkpoint blockade and adoptively transferred cell therapies. The rapidly expanding field of cancer immunology and immunotherapeutics means that rational targeting of this disease in both species should enhance treatment outcomes in veterinary and human clinics

    High fidelity single-shot readout of a transmon qubit using a SLUG {\mu}wave amplifier

    Full text link
    We report high-fidelity, quantum nondemolition, single-shot readout of a superconducting transmon qubit using a DC-biased superconducting low-inductance undulatory galvanometer(SLUG) amplifier. The SLUG improves the system signal-to-noise ratio by 7 dB in a 20 MHz window compared with a bare HEMT amplifier. An optimal cavity drive pulse is chosen using a genetic search algorithm, leading to a maximum combined readout and preparation fidelity of 91.9% with a measurement time of Tmeas = 200ns. Using post-selection to remove preparation errors caused by heating, we realize a combined preparation and readout fidelity of 94.3%.Comment: 4 pages and 3 figure

    Hybrid Atom--Photon Quantum Gate in a Superconducting Microwave Resonator

    Get PDF
    We propose a novel hybrid quantum gate between an atom and a microwave photon in a superconducting coplanar waveguide cavity by exploiting the strong resonant microwave coupling between adjacent Rydberg states. Using experimentally achievable parameters gate fidelities >0.99> 0.99 are possible on sub-Ό\mus timescales for waveguide temperatures below 40 mK. This provides a mechanism for generating entanglement between two disparate quantum systems and represents an important step in the creation of a hybrid quantum interface applicable for both quantum simulation and quantum information processing.Comment: 4 pages, 4 figure

    Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout

    Full text link
    We have detected coherent quantum oscillations between Josephson phase qubits and microscopic critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. The period of the oscillations is consistent with the spectroscopic splittings observed in the qubit's resonant frequency. The results point to a possible mechanism for decoherence and reduced measurement fidelity in superconducting qubits and demonstrate the means to measure two-qubit interactions in the time domain

    Optimized Coplanar Waveguide Resonators for a Superconductor-Atom Interface

    Get PDF
    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor-atom experiments at 4.2 K, we show that resonator quality factors above 10410^4 can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 Ό\mum above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.Comment: 4 pages, 4 figure

    Learning physics in context: a study of student learning about electricity and magnetism

    Full text link
    This paper re-centres the discussion of student learning in physics to focus on context. In order to do so, a theoretically-motivated understanding of context is developed. Given a well-defined notion of context, data from a novel university class in electricity and magnetism are analyzed to demonstrate the central and inextricable role of context in student learning. This work sits within a broader effort to create and analyze environments which support student learning in the sciencesComment: 36 pages, 4 Figure
    • 

    corecore